Condition number based complexity estimate for solving polynomial systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Worst Possible Condition Number of Polynomial Systems

A worst case bound for the condition number of a generic system of polynomial equations with integer coefficients is given. For fixed degree and number of equations, the condition number is (non-uniformly, generically) pseudo-polynomial in the input size.

متن کامل

Complexity of solving parametric polynomial systems

We present three algorithms in this paper: the first algorithm solves zero-dimensional parametric homogeneous polynomial systems with single exponential time in the number n of the unknowns, it decomposes the parameters space into a finite number of constructible sets and computes the finite number of solutions by parametric rational representations uniformly in each constructible set. The seco...

متن کامل

A condition number theorem for underdetermined polynomial systems

The condition number of a numerical problem measures the sensitivity of the answer to small changes in the input. In their study of the complexity of Bézout’s theorem, M. Shub and S. Smale prove that the condition number of a polynomial system is equal to the inverse of the distance from this polynomial system to the nearest ill-conditioned one. Here we explain how this result can be extended t...

متن کامل

On a condition number of general random polynomial systems

Condition numbers of random polynomial systems have been widely studied in the literature under certain coefficient ensembles of invariant type. In this note we introduce a method that allows us to study these numbers for a broad family of probability distributions. Our work also extends to certain perturbed systems.

متن کامل

On the Complexity of Real Solving of Bivariate Polynomial Systems

In this paper we present algorithmic and complexity results for polynomial sign evaluation over two real algebraic numbers, and for real solving of bivariate polynomial systems. Our main tool is signed polynomial remainder sequences; we exploit recent advances in univariate root isolation as well as multipoint evaluation techniques.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2011

ISSN: 0377-0427

DOI: 10.1016/j.cam.2010.11.018